
www.elsevier.com/locate/ydbio

Developmental Biology 271 (2004) 372–387
Interplay between activator–inhibitor coupling and cell-matrix adhesion in

a cellular automaton model for chondrogenic patterning

Maria A. Kiskowski,a Mark S. Alber,a,* Gilberto L. Thomas,b,1 James A. Glazier,c

Natalie B. Bronstein,d,2 Jiayu Pu,d and Stuart A. Newmand,*

aDepartment of Mathematics and Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, IN 46556-5670, USA
bDepartment of Physics, University of Notre Dame, Notre Dame, IN 46556-5670, USA

cDepartment of Physics and Biocomplexity Institute, Indiana University, Bloomington, IN 47405-710, USA
dDepartment of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
Received for publication 2 July 2003, revised 18 March 2004, accepted 25 March 2004

Available online 24 May 2004
Abstract

We present a stochastic cellular automaton model for the behavior of limb bud precartilage mesenchymal cells undergoing chondrogenic

patterning. This ‘‘agent-oriented’’ model represents cells by points on a lattice that obey rules motivated by experimental findings. The

‘‘cells’’ follow these rules as autonomous agents, interacting with other cells and with the microenvironments cell activities produce. The

rules include random cell motion, production and lateral deposition of a substrate adhesion molecule (SAM, corresponding to fibronectin),

production and release of a diffusible growth factor (‘‘activator,’’ corresponding to TGF-h) that stimulates production of the SAM, and

another diffusible factor (‘‘inhibitor’’) that suppresses the activity of the activator. We implemented the cellular automaton on a two-

dimensional (2D) square lattice to emulate the quasi-2D micromass culture extensively used to study patterning in avian limb bud

precartilage cells. We identified parameters that produce nodular patterns that resemble, in size and distribution, cell condensations in leg-cell

cultures, thus establishing a correspondence between in vitro and in silico results. We then studied the in vitro and in silico micromass

cultures experimentally. We altered the standard in vitro micromass culture by diluting the initial cell density, transiently exposing it to

exogenous activator, suppressing the inhibitor, and constitutively activating fibronectin production. We altered the standard in silico

micromass culture in each case by changing the corresponding parameter. In vitro and in silico experiments agreed well. We also used the

model to test hypotheses for differences in the in vitro patterns of cells derived from chick embryo forelimb and hindlimb. We discuss the

applicability of this model to limb development in vivo and to other organ development.
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Skeletal pattern formation in the developing vertebrate

limb depends on interactions of precartilage mesenchymal

cells with factors that control the spatiotemporal differ-

entiation of cartilage. A full characterization in vivo

would require knowledge of, among other things, the

roles of Hox and Tbox genes, which help distinguish

between skeletal elements and limb types, and of Wnt

genes, which help distinguish dorsal from ventral surfaces

of the limb (reviewed in Tickle, 2003). However, the

most basic skeletogenic processes involve the spatial
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separation of precartilage mesenchyme into chondrogenic

and nonchondrogenic domains.

In vitro as well as in vivo (see reviews by Hall and

Miyake, 2000 and Newman and Tomasek, 1996), TGF-hs
and other members of this superfamily induce precartilage

condensation by a process that involves the upregulation of

fibronectin (Leonard et al., 1991). Mesenchymal cells ac-

cumulate in regions of increased cell-matrix adhesive inter-

actions (Downie and Newman, 1994, 1995; Frenz et al.,

1989a,b) and then acquire epithelioid properties by upregu-

lation of cell–cell adhesion molecules such as N-CAM

(Widelitz et al., 1993) and N-cadherin (Delise and Tuan,

2002; Oberlender and Tuan, 1994), the expression of which

is also controlled by TGF-h (Tsonis et al., 1994). Cartilage

differentiation or chondrogenesis follows at the sites of

condensation in vitro and in vivo.

We have suggested (Newman, 1996; Newman and

Frisch, 1979) that interactions between diffusible activators

and inhibitors of chondrogenesis can explain the approxi-

mately periodic patterns of chondrogenesis in the develop-

ing limb and in micromass cultures. Results of Miura and

Shiota (2000a,b) and Miura et al. (2000) provide strong

evidence for such a ‘‘reaction–diffusion’’ mechanism in

vitro. In particular, TGF-h2 acts as an activator by positively
regulating its own production, as well as precartilage con-

densation (Miura et al., 2000). Moftah et al. (2002) recently

found that activation of fibroblast growth factor receptor 2

(FGFR2), which appears on cells at sites of incipient

condensation, suppresses condensation in surrounding mes-

enchyme by eliciting production of an inhibitor of chondro-

genesis. While the molecular identity of the inhibitor is

unknown, it acts laterally, spreading by an unknown mech-

anism from its sites of production (Moftah et al., 2002).

The formation of mesenchymal condensations in micro-

mass cultures prepared from chicken or mouse limb pre-

cartilage cells provides an easily manipulated in vitro model

for exploring interactions between genetic and physical

processes (Delise and Tuan, 2002; Frenz et al., 1989a,b;

Leonard et al., 1991; Miura and Shiota, 2000a,b; Miura et

al., 2000; Moftah et al., 2002; Newman, 1977). At the

cellular level, these cultures proceed through essentially the

same steps as the limb mesoblast in vivo (Hall and Miyake,

1995, 2000; Newman and Tomasek, 1996), giving rise to

spatial patterns of condensation. The condensation patterns

then develop into patterns of cartilage nodules with charac-

teristic features, depending, for example, on whether the

cells come from the forelimb or hindlimb (Downie and

Newman, 1994, 1995). Although the patterns that form in

vitro differ in important respects from those of the devel-

oping limb bud in vivo, they form over similar spatiotem-

poral scales, using many of the same molecular components,

raising the possibility that the two processes have common

underlying bases (Newman, 1996). Significantly, ‘‘recom-

binant’’ limb buds consisting of dissociated, randomized

limb mesenchyme cells packed into ectoderm (Ros et al.,

1994; Zwilling, 1964) can form recognizable, well-spaced
cartilage elements, suggesting that important aspects of limb

skeletal pattern formation are self-organizing and would

therefore also function in vitro.

Although the in vivo and in vitro systems differ in the

number of cell types present and complexity of tissue

organization, the distribution of Hox gene products and

other regulatory molecules (reviewed in Tickle, 2003), and

in overall geometry, their common features are likely to

provide insight into the self-organizational aspects of skel-

etogenesis. Activators (such as TGF-hs: Chimal-Monroy et

al., 2003; Leonard et al., 1991; Merino et al., 1998; Miura

and Shiota, 2000a) and inhibitors (induced by ectodermal

FGFs: Hurle et al., 1989; Moftah et al., 2002) of chondro-

genesis and associated adhesion molecules operate in both

settings and constitute dynamical systems with the potential

to form the requisite patterns (Newman, 1988, 1996).

Computational models can keep track of vast numbers of

molecular interactions and cell behavioral changes and are

therefore ideal for representing the dynamics of cellular

pattern formation. Such models, if they reflect the authentic

features of development, can potentially account for complex

behaviors under normal conditions and predict the effects of

experimental manipulations and genetic alterations.

Cellular automata (CA), one class of computational

model, are dynamical systems defined on a regular lattice.

While CA, unlike most biological systems, are discrete in

space, time, and state, under appropriate assumptions they

can model biological phenomena as varied as predator–prey

dynamics in fish populations (Dewdney, 1987; Ermentrout

and Edelstein-Keshet, 1993), bacterial colony growth (Kreft

et al., 2001), and pacemaker activity in cardiac tissue

(Kaplan et al., 1988; Winfree et al., 1985). The range of

applicability and the power of such models lie in their

surprisingly rich array of complex behaviors and spatial

patterns, which arise from the interaction of components

that follow simple rules (Wolfram, 1983, 1994a,b, 2002).

This paper presents a stochastic CA model for the

formation of patterns of mesenchymal condensations in

micromass cultures. As indicated above, this in vitro system

provides a simplified, experimentally tractable model for

skeletal patterning in the vertebrate limb. Its quasi-2D

geometry suits computational modeling particularly well.

Because introduction of exogenous growth factors (Leonard

et al., 1991; Miura and Shiota, 2000a; Moftah et al., 2002),

alteration of gene expression (reviewed in Delise et al.,

2000), and evaluation of patterns (Miura and Shiota, 2000a;

Miura et al., 2000) are straightforward in the limb micro-

mass culture, we can examine whether our computational

model can represent normal and experimentally manipulated

developmental pattern formation.

For the computational model to be manageable, we must

select key processes from the hundreds of cell–cell and

cell–gene product interactions in the limb. Our choice for

the ‘‘core’’ patterning interactions comes from experiment

and constitutes a set of hypotheses—a dynamical develop-

mental model—for chondrogenesis in limb bud mesen-
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chyme. The computational model implements and tests the

developmental model.

In this study, we have defined a range of parameter

values for the computational model that reproduces the size

and distribution of precartilage condensations in micromass

cultures prepared from chicken leg precartilage mesen-

chyme cells. We have then explored this ‘‘standard’’ model

computationally with regard to roles of random cell move-

ment, secreted substrate adhesion molecules (SAMs; e.g.,

fibronectin) and lateral inhibitor of condensation, effects of

cell dilution and forced overexpression of substrate adhesion

molecule, addition of exogenous activator (i.e., TGF-h), and
differences between patterns in cultures prepared from leg

and wing precartilage cells. In each case, the computational

results are compared with experimental results, and there is

good agreement.

In the following section, we describe the key features of

the in vitro, developmental, and computational models.
Fig. 1. Gene product interactions leading to limb precartilage mesenchymal

condensation. This schematic diagram summarizes the major features of the

developmental system the computational model simulates. The text

discusses the experimental bases of the various steps. The molecular

identity of the lateral inhibitor of condensation (Moftah et al., 2002) is

unknown. This inhibitor may act at the level of TGF-h synthesis or activity

(solid inhibitory vector), fibronectin synthesis (dashed inhibitory vector), or

at some earlier stage. For the purposes of our computational model, we

assume it acts on the activator (i.e., TGF-h).
Materials and methods

In vitro model

Our cell culture experiments use mesenchymal tissue

isolated from the distal 0.3 mm of Hamburger and Hamilton

(1951) stage 24–25 leg or wing buds of 5-day White

Leghorn embryos (Avian Services, Inc., Frenchtown, NJ)

(Downie and Newman, 1994, 1995; Frenz et al., 1989a,b).

This tissue is free of myoblasts and myogenic precursors,

which have not yet migrated into the limb tip at these stages

(Brand et al., 1985; Newman et al., 1981); the cultures

therefore consist almost entirely of precartilage cells. We

plate the cells at 1.75 � 105 (or 1.5 � 105 for dilution

experiments) per 10-Al spot on Costar 24-well plates (Cat.

No. 3526) at approximately uniform cell density in serum-

free defined medium (DM: Paulsen and Solursh, 1988).

Where indicated, we added TGF-h2 (2 ng/ml in DM) to the

cultures 24 h after plating and washed it out with DM 5

h later (Leonard et al., 1991). Downie and Newman (1994)

provide additional culture details. Imaging of living cultures

used Hoffman Modulation Contrast microscopy (Modula-

tion Optics, Inc., Greenvale, NY), with condenser and

polarizer adjusted to visualize cell condensations (Frenz et

al., 1989b). We fixed some cultures of each group after 6

days of incubation and stained for cartilage matrix with

Alcian blue at pH 1.0 (Downie and Newman, 1994).

Transfection

Stage 24 leg bud tips were suspended in 1 ml phosphate-

buffered saline (0.02 M sodium phosphate buffer, 0.15 M

NaCl, pH 7.4) containing 10 Ag capped mRNA synthesized

using the messageMachine kit (Ambion) with a template

consisting of a 843 b cDNA sequence encoding the 29-kDa

amino-terminal heparin-binding domain of chicken fibro-
nectin preceded by the natural fibronectin secretory signal

sequence (Pu, 1999) cloned into pBluescript (Strategene).

We applied three 50-ms 2-V pulses to the tissue in a BTX

Electro Square Porator T820 equipped with an Enhancer 400

oscilloscope (Genetronics, Inc., San Diego, CA) in a 4-mm

gap BTX electroporation cuvette (Moftah et al., 2002). The

limb tips were then treated with trypsin, dissociated, and

plated as described above.

Developmental model

Our basic developmental model for precartilage conden-

sation consists of the following elements:

(i) Limb mesenchymal cells move randomly with a

constant diffusion rate unless their extracellular matrix

or surface adhesive properties change.

(ii) All cells can produce TGF-h.
(iii) TGF-h stimulates cells to produce more TGF-h.
(iv) Cells in incipient condensations secrete a lateral

inhibitor of condensation.

(v) TGF-h induces cells to produce fibronectin and N-

cadherin.

(vi) Cell motility decreases in matrices containing elevated

levels of fibronectin.

(vii) N-cadherin promotes cell–cell adhesion.

All these elements of the developmental model have

experimental support, as noted above. Fig. 1 presents a

schematic diagram of the gene product interactions that the

computational model employs.

Computational model

Our computational model contains three components.

First, we model cells as occupied nodes of a square

lattice (i.e., a rectangular grid) whose default behavior is
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random walk diffusion (analogous to Brownian motion). We

assume all cells are identical.

Second, we simulate on the lattice a cell-driven process

that depends on the interaction between two molecular

species: a diffusible activator, A, which we identify with

TGF-h in the developmental model, and an inhibitor, B,

which we identify with the laterally acting inhibitory activ-

ity in the developmental model. For the purpose of the

computational model, we assume that B diffuses with a

faster diffusion rate than A. Since cells produce these

molecular species, only nodes of the lattice that contain

cells produce morphogens.

Third, when cells encounter threshold levels of activator,

they respond by producing a secreted, but otherwise

immobile, molecular species to which cells attach. We term

this substrate adhesion molecule (SAM) and identify it with

fibronectin in the developmental model.3

Our simulation defines a ‘‘morphogenetic domain’’ on a

square n � n lattice by an n � n matrix of 0’s and 1’s. A ‘0’

indicates a node outside of, and a ‘1’ indicates a node

belonging to, the morphogenetic domain. The domain, all

portions of which need not be connected, and which can have

holes, can freely change at each time step and could be

calculated by an auxiliary program. The only restriction on

the domain is that it is a union of overlapping rectangles of at

least two lattice points in height and width. In the current

simulations, the morphogenetic domain is the entire n � n

lattice. The components in the morphogenetic domain of the

lattice include cells, activator molecules, inhibitor molecules,

and SAM molecules. We store the concentration of each of

these components as an n � n matrix of integers, where the

matrix element (i,j) corresponds to the concentration of the

various components at the node (i, j).

Multiple cells and molecules of each type may occupy a

node. Boundary conditions for the morphogenetic domain

of the lattice are reflective (e.g., like the cushions of a pool

table), so that particles (cells or molecules) cannot diffuse

beyond the domain boundary. Diffusion of cells and

molecules in directions crossing the boundary has zero

probability while the sum of probabilities of diffusing in

permitted directions and resting is equal to 1. If the

morphogenetic domain contains two noncontiguous

regions, then the various activities will occur in each region

with no communication between them.

We initially distribute a fixed number of cells uniformly

on a disc-shaped region centered in the morphogenetic

domain of the lattice. We set initial densities of activator,

inhibitor, and SAM to zero. The total number of cells

remains constant throughout the simulation and cells secrete

activator, inhibitor, and SAM molecules. Activator and

inhibitor molecules diffuse through the morphogenetic do-
3 Because this study contains results both of in vitro and in silico

experiments, we have chosen to use separate terms for the corresponding

molecular entities in the two domains. In particular, we avoid using specific

names of molecules for components of the computational model.
main of the lattice at every time-step, while SAM diffuses

only during the time-step in which it is secreted. The

diffusing molecules at each node independently move one

unit up, down, left, right, or rest. The probability of moving

in any permitted direction is equal, while the probability of

resting pR is an adjustable parameter with any value

between 0 and 1. A higher probability of resting corre-

sponds to a lower rate of migration, so we define the rate of

diffusion as 1 � pR.

Cells initially secrete a small basal amount of activator, A.

Since model cells are points, we may view secretion as

occurring only at cell boundaries. Increased levels of activa-

tor stimulate secretion of activator and inhibitor. The increase

in activator and inhibitor secretion is linear with respect to

activator levels up to a plateau level of production for each

morphogen. We assume that inhibitor decreases the effective

activator concentration. Because inhibitors of TGF-h activity

may act post-secretion (Smith, 1999), we assume that inhib-

itor levels decrease activator levels without requiring the

presence of cells. For additional details of the mathematical

model of activation and inhibition and of the dynamics of

SAM production and deposition, see the Appendices.

Cells may have an extended response to activator levels

since they continue to produce fibronectin for hours even

after TGF-h is removed (Leonard et al., 1991). Thus, once

threshold levels of activator appear at a node, we continue

SAM production at that node for 5 h, independent of

subsequent lower levels of activator. Keeping track of nodes

that have seen threshold levels of activator is more compu-

tationally efficient than keeping track of the exposure of

thousands of cells and is a good approximation since the

diffusion of cells in our simulation is relatively slow.

Simulation results that depict cells represent SAM-at-

tached cells as black pixels and unattached cells as gray

pixels. This representation corresponds to the appearance of

cells in micromass cultures visualized by Hoffman Modu-

lation Contrast microscopy, where the rounded cells in

condensations appear darker than the flatter cells outside

the condensations.

For simplicity, the computational model we used in our

initial study did not include assumption (vii) and the

corresponding portion of assumption (v) of the developmen-

tal model. This omission facilitated calculation at the pos-

sible expense of detailed correspondence between in silico

and in vitro results. The model, however, permits straight-

forward incorporation of a cell adhesion protein (and other

similar cell properties and products) in subsequent studies.

Smoothing algorithm

Local inhomogeneity in the cell pattern results naturally

from the discrete local rules of our CA. Smoothing produces

a more realistic visual representation since it depicts cells as

occupying the available culture plate surface, as in experi-

ments, rather than as stacks. Although we assume the CA

model starts with a ‘‘confluent’’ cell layer (every lattice
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point occupied by a cell), randomly moving cells stack

unevenly on nodes as they move along discrete channels

(up, down, left, and right). This inhomogeneity is only a

local artifact, however, and we can recover a confluent cell

layer by averaging the cell distribution over a small neigh-

borhood. In contrast, in vitro, confluently plated cells can

slide past each other via tiny readjustments in their position,

and the cultures exhibit no empty space between cells. We

have therefore used a smoothing routine in visualizing cell

distributions. Smoothing proceeded as follows: if more than

one cell stacks on a node of the lattice, the displayed image

averages the extra cell over the eight immediate neighbors

of the node. Since our images are binary (a node is colored

only if a cell is present), we define a density threshold of 0.5

cells per node for a cell to be visible.

Quantitative analysis

We compute the average peak interval for condensations

in both cultures and simulations using the peak length

method of Miura et al. (2000) for island patterns. We

defined the peak length as the average distance between

the center lines of chondrogenic areas. It measures the

periodicity in the chondrogenic pattern and provides insight

into the underlying mechanisms that form such patchy

patterns (Miura et al., 2000). In particular, the average peak

interval is independent of the width of the chondrogenic

areas and the type of chondrogenic pattern (e.g., islands or

stripes) (Miura et al., 2000). We used the algorithm de-

scribed in Miura et al. (2000) to segregate chondrogenic and

non-chondrogenic areas by binary image processing. After

skeletonizing both the primary image and the inverted

image and counting the number of peak and valley pixels,

we used the program to measure the total lengths of peaks

and valleys in the chondrogenic patterns. In certain cases, as
Fig. 2. Comparison of in vitro and in silico results for standard and diluted leg-ce

optics after (a) 48 h, (b) 72 h, and (c) for 15% dilution after 72 h. Actual size of eac

results of smoothed free (gray) and stuck (black) cell locations after (a) 1000

parameters, and (c) 4000 time-steps for 50% diluted leg-cell culture. Simulation pa

threshold = 1000, diffusion rate of A = 0.05, diffusion rate of B = 1, aA = 0.09, aB =

high magnification views.
described in the text, we used a different quantitative

measure of the chondrogenic pattern: the average island

separation, defined as the average distance between each

island center and the centers of its two closest neighbors. To

represent the distribution of nearest neighbors, we measure

the distance from the center of an island to the center of its

nearest neighbor for all islands and count the fraction that

fall in the range {0.8 R, 1.2 R}, where R is any real number.

We plot this fraction as a function of R.
Results

Chemical peaks and cell clustering: standard ‘‘leg’’

conditions

In living leg cell cultures, the initial cell distribution is

homogeneous, but, by the second day of growth, cells

begin to form tightly packed focal condensations. Spacing

between condensations is irregular, with a measurable

average distance between centers (i.e., the average peak

interval). The average condensation size generally increases

in wing-cell cultures as the condensations expand and often

merge (Downie and Newman, 1995; Leonard et al., 1991),

whereas it stays fixed in leg-cell cultures where most

condensations remain discrete (Downie and Newman,

1994, 1995). The terminal pattern in the leg cultures occurs

around 3 days and in the wing cultures around 4 days. The

condensations differentiate fully into cartilage nodules by

day 6. Leg condensations visualized by Hoffman Contrast

Modulation optics are evident at 48 h (Fig. 2a) and

prominent after 72 h (Fig. 2b).

We measured the peak interval (see Materials and

methods) and condensation ‘‘island’’ area in these cultures.

For 13 leg cultures, the mean average peak interval was
ll cultures. Leg condensations visualized by Hoffman Contrast Modulation

h microscopic field (‘‘high magnification view’’) is 1 � 1.4 mm. Simulation

time-steps for leg control parameters, (b) 4000 time-steps for leg control

rameters (‘‘standard leg’’) are diffusion rate of cells = 0.1, SAM production

0.15, bA = 1.1, Amax = 55 and Bmax = 55. Simulation images correspond to



Fig. 3. Simulation results for scaled concentrations of key variables

compared to the leg condensation pattern. (a) Morphogen A concentration,

and (b) morphogen B concentration, after 4000 time-steps for control leg

parameters; (c) leg condensations visualized by Hoffman Contrast

Modulation optics after 72 h. Actual diameter of the circular culture is

3 mm (‘‘low magnification view’’); (d) scaled SAM density after 4000

time-steps for control leg parameters. Simulations correspond to low

magnification views.
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0.16 mm (range: 0.12–0.24 mm) and the mean average

island area was 0.01 mm2 (range: 0.005–0.028 mm2).

We first explored the behavior of the CA model under

conditions that simulate those of a typical limb-cell micro-

mass culture. The initial micromass diameter in vitro is

approximately 3 mm. Although living cells are plated at

greater than confluent density in standard in vitro experi-

ments (see e.g., Downie and Newman, 1995), a layer of

ECM rapidly separates the cells, as in precondensed limb

mesenchyme in vivo (Thorogood and Hinchliffe, 1975). Our

simulations assumed a matrix to cell area ratio of 60:40, a
Fig. 4. Simulation dynamics of activator concentrations, SAM accumulation, and

Morphogen A concentrations greater than threshold (1000 units), (b) SAM locatio

time-steps. (d) Morphogen A concentrations greater than threshold (1000 units)

locations after 4000 time-steps. Simulation images correspond to high magnificat
cell diameter of 15 Am, and a ‘‘culture’’ spot diameter of 120

cells. Thus, we model cells with average density 1 on a disk

120 nodes in diameter (see Fig. 3).

As cells diffuse, one or more cells, or no cells, may

occupy a node, so the production of activator and inhibitor

varies over the lattice. Peaks of morphogen A and B begin

to appear early in the simulation. Morphogen A peaks are

only one or two nodes in size and levels drop from over

1000 units in a peak to zero units in immediately surround-

ing nodes (Fig. 3a). Morphogen B peaks are larger in size

and much more diffuse (Fig. 3b). For comparison, we show

in vitro condensations at the scale of a full micromass

culture for the comparable experimental stage (Fig. 3c).

When the level of morphogen A in the simulation

reaches a threshold, the cells begin to deposit SAM (Fig.

3d). Cells stick to these SAM deposits and local cell density

increases. Activator, SAM, and cell concentration peaks are

all co-local (compare Figs. 4d, e, and f).

Comparison of the development of condensations in

experiments and simulations indicated that the period

spanned by computational time-steps 1000–4000 corre-

sponded to 50–72 h in culture. In particular, the cell density

distribution after 1000 time-steps for the optimized param-

eters qualitatively resembles precartilage condensations af-

ter 50 h (compare Figs. 2a and d). During the next 3000

times-steps, the islands’ areas grow but their number

remains unchanged, as in experiments after 72 h (compare

Figs. 2a, b and d, e).

Simulated morphogen peaks, SAM deposits, and cell

clusters develop in both time and space (Fig. 4). The number

of SAM deposits does not increase between 1000 and 4000

time-steps (compare Figs. 4b and e), indicating that almost

all activator peaks form within 1000 time-steps. Activator

peaks remain co-local with SAM deposits. SAM clusters

grow, however, and occasionally fuse over 4000 time-steps

(compare Figs. 4b and e).

For our ‘‘standard leg’’ simulation parameters, which we

found by trial and error, the average peak interval is 0.160
cell density over 1000–4000 time-steps for standard parameter vectors. (a)

ns and (c) smoothed free (gray) and stuck (black) cell locations after 1000

, (e) SAM locations, and (f) smoothed free (gray) and stuck (black) cell

ion view (see legend to Fig. 2).



Fig. 5. Average peak interval vs. average island size for 13 experimental

and 14 simulation points. For the 13 experiments (stars), the average peak

interval ranges from 0.118 to 0.244 mm (horizontal dashed lines) and the

average island size ranges from 0.0046 to 0.028 mm2 (vertical dashed

lines). Average peak interval vs. average island size for two simulation trials

each of the ‘‘standard leg’’ (filled circles) and a nearby simulation point,

‘‘near standard leg’’ (filled squares), with cells diluted by 10% and the rate

of diffusion of inhibitor decreased to 0.95. We also show average peak

intervals vs. average island size for 10 simulations with parameters

randomly chosen within 5% of the standard leg values (unfilled circles) and

near the standard leg values (unfilled squares).

Table 1

Sensitivity of average peak interval and island size to each key parameter when each parameter is varied independently near the standard point

Key parameter Standard value

and range varied

Sensitivity of

average peak

interval (mm)

Sensitivity

of island

size (mm2)

Effect on

average

peak interval

Effect on

island size

Upregulation of activator in response to activator 0.09 [0.075, 0.115] �2.2 0.38 Decreases Increases

Upregulation of inhibitor in response to activator 0.15 [0.12, 0.20] 1.4 �0.20 Increases Decreases

Inhibition of activator in response to inhibitor 1.1 [1.02, 1.35] 0.3 �0.04 Increases Decreases

Diffusion rate of activator 0.05 [0.015, 0.15] 0.64 1.0 Increases Increases

Diffusion rate of inhibitor 1.0 [0.775, 1.00] �0.36 0.04 Decreases Increases

Cell dilution 0.0 [0.0, 0.70] 0.13 F0.01 Increases Non-monotonic
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mm (F0.001 mm) and the average island size is 0.007

mm2 (F0.0004 mm2), which fall well within the experi-

mental range. We needed to determine how our response

variables (average peak interval and island size) depended

on small changes in parameter values. The key parameters

in the computational model are the diffusion rates of

activator and inhibitor, the upregulation rates of activator

and inhibitor in response to activator, the inhibitory effect

of inhibitor on activator, and cell dilution. We sampled the

‘‘parameter space’’ defined by ranges of values of these

key parameters around the standard values by measuring

the effect of changing each key parameter independently

(Table 1). We adjusted each key parameter independently

since sampling the full multidimensional space in an

exhaustive fashion was not feasible.

For each parameter, the sensitivity of each response

variable (average peak interval and island size) is defined

as the experimental range of the response variable divid-

ed by the extent of parameter variation for which

simulation results remain within the experimental range.

The sensitivity for a given parameter was either very

small or there were clear monotonic trends as the

parameter was varied. We did not adjust arbitrarily set

parameters, such as the maximum per cell production of

activator and inhibitor, the rate of cell diffusion, and the

threshold level of activator that stimulates SAM produc-

tion, in this set of simulations.

The trends summarized in Table 1 for parameters near

the ‘‘standard leg’’ values provide insight into the mech-

anism of island formation in our computational model.

Factors that directly or indirectly increase activator levels

(upregulation of activator and diffusion of inhibitor) de-

crease the spacing between islands, and factors that directly

or indirectly decrease activator levels (upregulation of

inhibitor, inhibitor strength, diffusion of activator, and cell

dilution) increase island spacing. In contrast, factors that

increase the range of influence of an activator peak

(upregulation of activator and activator diffusion) increase

island size. Below, we investigate in more detail the

quantitative effects of varying cell dilution and inhibitor

strength in model simulations.

The range over which we may vary each parameter

independently and the sets of antagonistic trends in Table

1 mean that many choices near our ‘‘standard leg’’
parameter values will duplicate experimental patterns.

For example, simulation trials with decreased diffusion

rate of inhibitor and cell density diluted by 10% (Fig. 5,

filled squares) also fall within the experimental range. For

our model to provide a good representation of the in vitro

system, small deviations from these ‘‘standard’’ parame-

ter-space points should not greatly affect the response

variables. As a test, we randomly chose parameter values

within 5% of the standard values and found that the

resulting patterns remained within the range of experi-

mental measurements (Fig. 5). As expected from the

trends in Table 1, there is an apparent inverse relationship

between the average peak interval and the average island

size in this regime.



Fig. 6. Results of simulations without cell diffusion or without SAM. (a)

Morphogen peaks greater than threshold (1000 units) and (b) SAM

locations after 4000 time-steps with no cell diffusion. Morphogen peaks

greater than threshold (1000 units) after (c) 1000 time-steps and (d) 4000

time-steps with no SAM production. Simulation images correspond to high

magnification views.
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Role of cell diffusion and SAM production

We compared the control simulation with simulations

without cell diffusion or SAM production. Omitting cell

diffusion greatly reduces the number of activator peaks

formed within 4000 time-steps (compare Figs. 4d and 6a).

Cell diffusion greatly facilitates the production of activator

peaks. Also, without cell diffusion, SAM clusters do not

grow (compare clusters from Fig. 6b with those of Fig. 4e),

so, at least in this simple model, the growth of SAM islands

requires cell diffusion. The need for diffusion may result
Fig. 7. Patterns for varying cell dilutions. (A) SAM island patterns and (B) number

show results for two simulations with independent initial conditions. Simulation
from the artificial constraint of constant cell area in our 2D

representation; in culture, cells secrete ECM, which pushes

them apart and into the third dimension (see Discussion).

Without SAM production, morphogen peaks move (com-

pare Figs. 4c and d), suggesting that these peaks require the

formation of SAM islands to lock in place. In summary, cell

diffusion along with activator-stimulated deposition of SAM

causes cells to cluster, which creates islands of cells that are

simultaneously sources of activator and inhibitor. Islands of

cells maintain local elevated concentrations of activator

even though the activator diffuses, effectively locking

activator peaks in place.

Our computational implementation of the simple devel-

opmental model thus has the following features:

(i) Interaction between cell-produced diffusible activating

and inhibiting morphogens can create strong peaks in

morphogen levels even when cells diffuse freely.

(ii) Deposition of SAM occurs at sites of morphogen peaks

and locks these peaks in place.

(iii) Cells accumulate at SAM islands, giving rise to

precartilage condensations.

(iv) The number and position of precartilage condensations

are determined early during the simulation, while

condensation size increases with time.

Effect of cell dilution

Experimental manipulation of model parameters indi-

cated a range for each key parameter that reproduced the

standard leg pattern, defined by measurements of island

size and average island spacing (Table 1; Fig. 5). We
of SAM islands, for different cell dilutions after 4000 time-steps. In (B) we

images correspond to low magnification view.



Fig. 8. Analysis of simulated chondrogenic patterns for varying cell dilutions. (A) Average peak interval in mm vs. percent dilution for two different

simulations for each dilution value. (B) Fraction of islands with closest island found within a distance of 0.8 D to 1.2 D as a function of D (in mm) (see

Materials and methods) for percent dilutions of 0% (solid line), 30% (dashed line), 50% (dotted line), and 70% (dash-dotted line).
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next sought to determine whether experimental manipu-

lation of the model parameters would reproduce altered

patterns of condensation seen in in vitro experiments. For

example, decreasing the initial cell density in in vitro

experiments increased the average distance between con-

densations (Fig. 2c). Simulations with a smaller initial

number of cells qualitatively reproduced these results

(Fig. 2f). These 2D simulations required a higher dilution

(50%) to match the appearance of cultures seeded at 85%

of the control value (15% dilution). This disparity may

relate to the nonlinear relation of plating efficiency to

seeding density in the micromass cultures; that is, a 15%

decrease in seeding density probably represented a greater

than 15% reduction after the first day of culture.
Fig. 9. Comparison of in vitro and in silico results for experimentally manipula

Hoffman Contrast Modulation optics after 72 h (a) transiently exposed to TGF-

condensation, and (c) transfected with capped mRNA specifying the NH2-terminal

have merged throughout the cultures in (a and b), and in the center of the culture

stuck (black) cell locations for (d) added activator, (e) no inhibitor, and (f) ext

morphogen A to every node at 480 time-steps and removed it at 580 time-steps.

molecule stochastically once every 2000 time-steps.
We systematically analyzed how the simulation

depended on cell density. The number of separate islands

at 4000 time-steps decreased roughly linearly with the

dilution percentage (Figs. 7A and B). The average peak

interval (see Materials and methods) at 4000 time-steps

was step-like in the dilution percentage, remaining between

approximately 0.17 and 0.23 mm up to about 70%

dilution, and rising sharply to about 0.9 mm between

80% and 90% dilution (Fig. 8A). We expect such behavior

because the distance between islands of roughly constant

size increases as the inverse of the number of islands.

Significantly, and also expectedly, the greater the dilution,

the broader the range of island spacings (Fig. 8B), that is,

the spacing is less regular.
ted leg-cell cultures. Leg cultures (high magnification view) visualized by

h on the day after plating, (b) with no FGF-induced lateral inhibition of

domain of chicken fibronectin (see Materials and methods). Condensations

in (c). Simulation results after 4000 time-steps of smoothed free (gray) and

ra basal production of SAM. For added activator, we added 500 units of

For extra basal fibronectin production, 50% of cells produce an extra SAM



Fig. 10. Role of lateral inhibition in pattern formation in silico. Simulation

results after 1000 time-steps for (a) morphogen A concentrations greater than

threshold (1000 units) and (b) SAM locations for standard parameter values

except with no production of inhibitor. Simulation results after 1000 time-

steps for (c) morphogen A concentrations greater than threshold (1000 units)

and (d) SAM locations, with no production of inhibitor with the following

parameters: diffusion rate of cells = 0.1, SAM production threshold = 5000,

diffusion rate of A = 0.05, diffusion rate of B = 1, aA = 0.005, aB = 0, bA = 0,

Amax = 5, and Bmax = 0. The SAM pattern tracks the activator pattern even in

the absence of inhibitor. Simulation images correspond to low magnification

views (see legend to Fig. 3).

Fig. 11. Pattern formation for varying inhibitor strengths. (A) SAM island patterns;

steps. (B) shows two simulations with independent initial conditions for each inh
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Stimulation by exogenous activator

In previous work, we studied the response of micro-

mass cultures to exogenous TGF-h (Downie and New-

man, 1994; Leonard et al., 1991). Transient (5–6 h)

administration after one full day of culture was the most

effective of a wide range of treatments in enhancing

condensation and subsequent chondrogenesis (Leonard et

al., 1991). Applying this protocol to leg cultures trans-

formed the nodular morphology into a nearly continuous

sheet, first of condensed cells, then cartilage (Downie and

Newman, 1994) (Fig. 9a). In a corresponding simulation,

we added 500 units of activator to every node of the

culture after 480 time-steps (equivalent to 25 h) and

removed it after 120 time-steps. After a total of 4000

time-steps, the simulation qualitatively reproduced the

experimental results (Fig. 9d).

Role of lateral inhibitor

In a previous study (Moftah et al., 2002), we found

that limb cells grown in the presence of serum formed

discrete, nodular condensations as a result of a laterally

acting inhibitor of condensation mediated by a fibroblast

growth factor (FGF) receptor expressed at sites of

incipient condensation. If we did not include ectoderm

or ectodermally derived FGFs in leg-cell cultures, for

example, a continuous sheet of condensed cells formed

(see Fig. 9b) because of the lack of lateral inhibitor

(Moftah et al., 2002). We therefore performed a simula-

tion using standard ‘‘leg’’ parameters but eliminated the

production of inhibitor. Within 1000 time-steps, SAM

l Biology 271 (2004) 372–387 381
(B) number of SAM islands for different inhibitor strengths after 4000 time-

ibitor strength. Simulation images correspond to low magnification views.
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covered the entire lattice occupied by cells, and cells

formed broad, confluent patches (Fig. 9e). Figs. 10a and

b show the distribution of activator and SAM after 1000

time-steps for simulations with no inhibitor. This set of

parameters thus requires the inhibitor in order to generate

the standard nodular pattern. Other parameter sets did

not require the inhibitor to form distinct activator peaks

(Fig. 10c). The SAM clusters that form under these

conditions (Fig. 10d), however, differ in appearance from

those of the control (compare Figs. 4b and 10d) since

the peaks are not isolated, periodically spaced, or regular

in size.

We analyzed systematically the pattern’s dependence

on the inhibitor. Varying the inhibitor strength bA (the

degree to which inhibitor suppresses activator; see Ap-

pendix A) between 0.9 and 1.8 led to SAM island

patterns that ranged from entirely confluent (0.9) to focal

with an apparently regular distribution (e.g., 1.1) to focal

but apparently irregular (e.g., 1.7) (Fig. 11A). For bA less

than or equal to 1, activator levels dominate inhibitor

levels during SAM deposition, and islands are confluent

(Fig. 11A). For bA above 1, the pattern undergoes an

abrupt transition from a single island to many separate

islands (Fig. 11B). This phenomenon resembles the

‘‘percolation transition’’ characteristic of a wide range

of many-component physical systems with some random

properties (Sahimi, 1994).

Island separation (see Materials and methods) is zero

for both the fully confluent and interconnected islands, and

is positive for inhibitor strengths above 1.0 (Fig. 12A).

Fig. 12A also shows the average peak interval (see
Fig. 12. Analysis of simulated SAM islands for varying inhibitor strengths. (A)

squares) in mm vs. inhibitor strength for two different simulations for each inhibit

with disconnected SAM islands. The average island separation is 0 when the cond

Fraction of islands with the closest island found within a distance between 0.8 D an

strength equal to 1.1 (solid line), 1.3 (dashed line), 1.5 (dotted line), and 1.7 (da
Materials and methods) for various inhibitor strengths that

produce disconnected islands. The distribution of island

spacings tends to broaden with increasing inhibitor

strength (above 1) (Fig. 12B). Large inhibitor strengths

did not correlate with pattern regularity. Indeed, in the

cases we examined, the narrowest distribution of island

spacings was for bA = 1.3 (Fig. 12B).

Constitutively expressed SAM

In another experiment, we transfected cells with

capped mRNA encoding the NH2-terminal heparin bind-

ing domain of fibronectin, a protein domain known to

mediate condensation in limb bud mesenchyme (Downie

and Newman, 1995; Frenz et al., 1989b). In these

cultures, condensations tend to become confluent, partic-

ularly in central regions (Fig. 9c). In the corresponding

simulation, 50% of the cells (randomly chosen; to corre-

spond to typical transfection efficiency) produced an extra

SAM unit at an average rate of once every 2000 time-

steps, regardless of local activator concentration. After

4000 time-steps, simulated transfected cultures had many

confluent condensations (Fig. 9f), qualitatively similar to

the experiment.

We could not always distinguish experimental results

for added TGF-h (Fig. 9a), low inhibitor (Fig. 9b), and

transfected fibronectin NH2-domain (Fig. 9c) from one

another in in vitro experiments nor based on the devel-

opmental model (see above) would we expect to. In

particular, in each of these cases, we expect, for different

reasons, enlargement of the activated (condensing, chon-
Average peak interval (filled circles) and average island separation (filled

or strength. We show the average peak interval alone for inhibitor strengths

ensation islands are fully confluent or connected (inhibitor strength V1). (B)
d 1.2 D as a function of D (in mm) (see Materials and methods) for inhibitor

sh-dotted line).



Fig. 13. Test of two hypotheses for the difference between leg and wing culture patterns. High magnification views visualized by Hoffman Contrast Modulation

optics after 72 h of (a) leg-cell culture and (b) wing-cell culture. Simulation results after 4000 time-steps of smoothed free (gray) and stuck (black) cell locations

for (c) control leg parameters, (d) SAM production decreased by a factor of 200, and (e) SAM production decreased by a factor of 200 and decreased activation

of inhibitor aB from 0.15 to 0.11.
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drogenic) zones at the expense of the inhibited zones.

The simulation results for the corresponding in silico

manipulations (Figs. 9d–f) also generally resemble one

another.

Differences between leg and wing

Since our model, with the standard ‘‘leg’’ cell parameter

values, qualitatively reproduced in silico several standard in

vitro experiments, we used it to determine what differences

between embryonic chicken forelimb (i.e., wing bud) and

hindlimb (e.g., leg bud) cells might cause their different in

vitro condensation patterns (Downie and Newman, 1994,

1995). Condensations in wing-cell cultures (Fig. 13b) have a

larger average island size after 72 h than in leg cultures

(Figs. 2b and 13a) and eventually become confluent (Leo-

nard et al., 1991).

Wing cells produce less fibronectin as a proportion of

total protein than leg cells and produce a smaller

incremental amount of fibronectin relative to basal levels

under TGF-h stimulation (Downie and Newman, 1995).

We tested whether this difference alone could account

for the pattern differences by decreasing SAM production

by a factor of 200. In these simulations, islands

remained discrete and their size decreased slightly (Fig.

13d), contrary to the observed wing-cell pattern (Fig.

13b).

In addition to producing less fibronectin, wing cells

might produce less additional inhibitor in response to

equivalent amounts of activator (TGF-h) (Newman,

1996). Indeed, wing and leg cells differ in their expres-

sion of the genes encoding transcription factors Txb4 and

Txb5 (Takeuchi et al., 1999), which regulate expression

of FGFs (Takeuchi et al., 2003). FGF expression, in turn,

relates to the production of a perinodular inhibitor of

condensation in the developing limb (Moftah et al.,

2002). We therefore performed simulations that both kept
the SAM production rate low relative to the standard leg

conditions and also decreased the activation of inhibitor

from 0.15 to 0.11. In this case, islands were broader and

less discrete (Fig. 13e), corresponding better to the

experimental wing pattern.
Discussion

Our computational model contains an activator–inhib-

itor circuit that corresponds to a reaction–diffusion pro-

cess. It also includes a set of rules that permits model

cells to interact with the SAM they, and nearby cells,

deposit. The sophistication of the rules therefore makes

this biological ‘‘lattice-gas’’ cellular automaton (Alber et

al., 2004; Wolf-Gladrow, 2000) a hybrid between classic

CA (e.g., Wolfram, 2002) and differential-equation-based

approaches (e.g., Painter et al., 2000), and allows us to

assess independently the roles of reaction–diffusion pat-

terning and cell-substrate adhesion in generating patterns

of precartilage condensation.

For example, we showed that omitting inhibition made

the simulation (Fig. 9d) less similar to experimental leg

cultures (Fig. 2b) than the simulation that included

inhibitor (Fig. 2d). Although for some choices of param-

eters island-type patterns formed without inhibitor (Fig.

10d), these patterns exhibited no evident regular spacing

between islands. While these simulations show that cell-

aggregation-based patterning can clearly occur with cell-

substrate adhesion in the absence of inhibition (see also

Zeng et al., 2003), theoretical arguments suggest that

biological structures that require reliable regular patterns

are likely to employ an inhibitory effect that originates

from the centers of activation and restricts the lateral

spread of the activator’s effect (Boissonade et al., 1994;

Meinhardt and Gierer, 2000; Turing, 1952). Our ‘‘stan-

dard model’’ contains such a lateral inhibitor. Experimen-
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tal findings in the limb also indicate the existence of

lateral inhibition of chondrogenesis (Hurle et al., 1989;

Moftah et al., 2002).

Once we determined the standard conditions for simu-

lating leg culture patterns, systematic variation of the

parameters provided insight into the origins of pattern

regularity (Table 1; Fig. 5). For example, the regularity of

the SAM island distribution broke down when the cells were

too dilute (Figs. 7 and 8) or when the range of inhibitor

activity was too short (Figs. 11 and 12). Such results suggest

how alterations of developmental parameters may create

morphological novelty during development and evolution

(Salazar-Ciudad et al., 2003).

We note that dynamical models based on different sets

of assumptions from those used here, for example, direct

cell – cell contact (Edelstein-Keshet and Ermentrout,

1990a,b) or cell traction (Murray and Oster, 1984; Ngwa

and Maini, 1995), are capable of giving rise to patterns

of cell association analogous to mesenchymal condensa-

tions. Experimental evidence on limb bud mesenchyme in

vitro and developing limbs in vivo, however, supports the

idea that the pattern of precartilage condensations arises

in response to a chemical prepattern rather than directly

through biomechanical effects (reviewed in Newman and

Tomasek, 1996).

Miura and Shiota (2000b) were unable to conclude

whether a cell-sorting mechanism using differential adhe-

sion, but not lateral inhibition, could account for the

periodicity of condensations (see also Zeng et al., 2003).

Subsequent work indicated that such inhibitory effects are

indeed present in vitro and in vivo, where they are

subject to modulation by FGFs (Moftah et al., 2002).

Our simulations indicate that attenuation of inhibitor

reduces periodicity in the condensation pattern, leading

to results that resemble chicken wing-cell cultures (Fig.

13b) and mouse limb-cell cultures (Miura and Shiota,

2000b), more than chicken leg-cell cultures (Figs. 2b and

13a). These results did not employ assumption (vii) of

our developmental model, that is, direct cell–cell adhe-

sion by CAMs, such as N-cadherin. We are currently

testing whether this mechanism can contribute to the

regularity of the condensation pattern despite attenuated

lateral inhibition.

Our success in obtaining a non-trivial parameter set

that reproduced the number, size, and distribution of

condensations of the standard culture, and the ability of

this parameter set to produce qualitatively accurate sim-

ulations of cultures under diluted, TGF-h-stimulated,

reduced-inhibitor, and fibronectin-transfected conditions,

gives us confidence that our CA model captures impor-

tant aspects of development. Because we could simulate

differences between wing- and leg-cell in vitro conden-

sation patterns by altering constitutive properties of cells

that plausibly relate to differences in expression of

transcription factors such as Tbx4 and Tbx5, the model

has predictive power for multiple cell types.
One unresolved issue is the lack of good correspon-

dence in the timing of the initial steps of in vitro and its

in silico condensation. A pattern corresponding to a 48-

h culture takes about 1000 time-steps, and a stationary

pattern, corresponding to about 72 h in vitro, takes

another 3000 time-steps. Since the processes involved in

the simulation are essentially uniform, the disparity is

most likely due to a lag in the culture’s recovery from

cell dissociation, or possibly a developmentally regulated

delay in the morphogenetic response of cells during

patterning (Newman and Frisch, 1979; Toole et al.,

1972). The lack of cell–cell adhesion may also play a

role.

Such examples, in which comparison of simulation

with experiment suggests missing elements in the model,

highlight the power of this approach in framing experi-

mental hypotheses. Indeed, CA modeling as presented

here, far from being a retrospective summary of existing

experiments, is actually a parallel means of experimenta-

tion on systems, such as chondrogenic patterning in vitro,

with partially characterized relevant variables and param-

eters. It is an efficient and cost-effective tool for homing

in on the range of potential manipulations that can

provide decisive tests of in vitro and in vivo experimental

models.

The specific model described here, with changes in

geometry and parameter choices, should apply to other

quasi-2D situations, such as epithelial pigment patterns

(Kondo and Asai, 1995) and feather bud formation (Jiang

et al., 1999; Prum and Williamson, 2002). Fully three-

dimensional developmental problems, such as skeletal

patterning during vertebrate limb development, will likely

require more elaborate cell automata-based strategies such

as those based on the extended Potts model (Glazier and

Graner, 1993; Izaguirre et al., 2004; Marée and Hogeweg,

2001) in conjunction with continuum approaches (Dillon et

al., 2003; Hentschel et al., in press).
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Appendix A. Mathematical model for activation and

inhibition

We model activation and inhibition at each node as

follows: let CA and CB be the concentrations of morph-
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ogens A and B, respectively. Let nc be the number of

cells at the node. For low levels of morphogen A,

morphogen A activates itself in proportion to some

parameter aA (>0) and to the number of cells:

CA ¼ CA þ ðaACAÞnc: ð1Þ

For high levels of morphogen A, however, each cell can

only produce a maximum level Amax of activator:

CA ¼ CA þminðaACA;AmaxÞnc: ð2Þ

We can express this dependence with a step-function UA:

CA ¼ CA þ UAðncÞ; ð3Þ

where

UAðncÞ ¼ fðaACAÞnc ifðaACAÞnc

< Amax; otherwise Amaxncg: ð4Þ

Low levels of morphogen A activate morphogen B in

proportion to a parameter aB (>0) and to the number of cells:

CB ¼ CB þ ðaBCAÞnc: ð5Þ

For high levels of morphogen A, however, each cell can

only produce a maximum level Bmax of activator:

CB ¼ CB þminðaBCA;BmaxÞnc: ð6Þ

We can express this dependence with a step-function UB:

CB ¼ CB þ UBðncÞ; ð7Þ

where

UBðncÞ ¼ fðaBCAÞ if ðaBCAÞnc

< Bmax; otherwise Bmaxncg: ð8Þ

Morphogen B inhibits morphogen A in proportion to a

parameter bA (>0) (the strength of inhibition) throughout

the lattice, independent of the concentration of cells:

CA ¼ maxðCA � bACB;0Þ: ð9Þ

Also, morphogen B decays as it inhibits morphogen A:

CB ¼ CB � DCA=bA; ð10Þ

where DCA is the change due to inhibition.

The net activation and inhibition are:

dCA=dt ¼ UAðncÞ � bACB;

dCB=dt ¼ UBðncÞ � DCA=bA:
ð11Þ
Appendix B . Dynamics of SAM production and

deposition

After we update the morphogen concentrations, if the

concentration of morphogen A exceeds a threshold At at a

node, each cell at that node creates a SAM ‘‘molecule’’

(i.e., a collection of molecules that act as a unit) with

probability pf. SAM randomly diffuses for a distance of

only one node, after which it no longer diffuses. The single

diffusion step allows the SAM to reach neighboring nodes,

so that the SAM deposits may extend to and affect the

immediate neighborhood of a cell. As the number of SAM

molecules in the extracellular matrix increases, the rate of

random cell movement (‘‘cell diffusion’’) decreases. How-

ever, the number of cells that may become trapped within a

small unit area has an upper limit. Our model allows up to f

SAM molecules per node and specifies that up to nf cells

can attach to each SAM molecule. In the in vitro system,

the amount of fibronectin that may reside at any site is

limited, and some is always lost to the medium. Therefore,

if a SAM molecule diffuses to a node that has excess SAM

molecules, we delete it. Cells coexisting at a node with

SAM molecules stick to each available SAM molecule at a

rate ps and unstick at a rate (1 � ps). Since all cells are

equivalent, we model attachment in the following way: at

each time step, we assume that all cells are initially

unattached to SAM. Then, each cell has a probability ps
of sticking to each available SAM molecule. Once a SAM

molecule has nf attached cells, it can no longer bind cells

during that time-step. Since a node can hold only f SAM

molecules and only nf cells may attach to each SAM

molecule, the maximum number of cells stuck at each

node is fnf.
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