NYMC > Stuart A Newman > Physical Mechanisms of Morphogenesis

Physical Mechanisms of Morphogenesis

The behavior of tissues during development, wound healing, tumor invasion and other morphogenetic events depends, in part, on quantitative relationships among physical properties such as surface tension, viscosity and elasticity that such tissues share with all semi-solid materials.  In addition, tissues are chemically "excitable media," and share with other such materials the capacity to generate stable chemical non-uniformities, i.e., patterns.  Our work in this area involves the formulation of dynamical models for processes such as vertebrate limb development and segmentation in vertebrate and invertebrate organisms.  In addition, we have characterized an experimental model for morphogenesis of mesenchymal tissues ("matrix-driven translocation") which has permitted us to investigate phase transition-like behaviors in extracellular matrices, and morphogenetic forces generated at the interfaces of such matrix phases.


Selected References

Newman, S. A. (1974). The interaction of the organizing regions in hydra and its possible relation to the role of the cut end in regeneration. J. Embryol. Exp. Morphol. 31, 541-555. (PDF)

Newman, S. A., and Frisch, H. L. (1979). Dynamics of skeletal pattern formation in developing chick limb. Science. 205, 662-668. (PDF)

Newman, S. A., Frenz, D. A., Tomasek, J. J., and Rabuzzi, D. D. (1985). Matrix-driven translocation of cells and nonliving particles. Science. 228, 885-889. (PDF)

Newman, S. A., Frenz, D. A., Hasegawa, E., and Akiyama, S. K. (1987). Matrix-driven translocation: dependence on interaction of amino-terminal domain of fibronectin with heparin-like surface components of cells or particles. Proc. Natl. Acad. Sci. U. S. A. 84, 4791-4795. (PDF)

Newman, S. A., and Comper, W. D. (1990). 'Generic' physical mechanisms of morphogenesis and pattern formation. Development 110, 1-18. (PDF)

Newman, S. A. (1993). Is segmentation generic? BioEssays 15, 277-283. (PDF)

Newman, S. A. (1998). Epithelial morphogenesis: a physico-evolutionary interpretation. In "Molecular Basis of Epithelial Appendage Morphogenesis" (C.-M. Chuong, Ed.), pp. 341-358. R. G. Landes, Austin, TX.

Newman, S. A. (1998). Networks of extracellular fibers and the generation of morphogenetic forces. In"Dynamical Networks in Physics and Biology" (D. Beysens and G. Forgacs, Eds.), pp.  139-148. Springer-Verlag, Berlin.

Newman, S. A., Forgacs, G., Hinner, B., Maier, C. W., and Sackmann, E. (2004). Phase transformations in a model mesenchymal tissue. Phys. Biol. 1, 100-109. (PDF)

Izaguirre, J. A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S. A., and Glazier, J. A. (2004). COMPUCELL, a multi-model framework for simulation of morphogenesis. Bioinformatics 20, 1129-37. (PDF)

Zambrano, M. C., Beklemisheva, A. A., Bryksin, A. V., Newman, S. A., and Cabello, F. C. (2004). Borrelia burgdorferi binds to, invades, and colonizes native type I collagen lattices. Infect Immun 72, 3138-46. (PDF)

Alber, M., Glimm, T., Hentschel, H. G. E., Kazmierczak, B., and Newman, S. A. (2005). Stability of n-dimensional patterns in a generalized Turing system: implications for biological pattern formation. Nonlinearity 18, 125-138. (PDF)

Alber, M., Hentschel, H. G. E., Kazmierczak, B., and Newman, S. A. (2005). Existence of solutions to a new model of biological pattern formation. Journal of Mathematical Analysis and Applications 308, 175-194. (PDF)

Newman, S. A., and Forgacs, G. (2005). Complexity and self-organization in biological development and evolution. In "Complexity in chemistry, biology and ecology" (D. Bonchev and D. H. Rouvray, Eds.), pp. 49-95. Springer, Berlin.

Forgacs, G., and Newman, S. A. (2005). "Biological physics of the developing embryo." Cambridge Univ. Press, Cambridge. (link)

Merks, R. M., Brodsky, S. V., Goligorksy, M. S., Newman, S. A., and Glazier, J. A. (2006). Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol 289, 44-54. (PDF)

Cickovski, T., Aras, K., Alber, M. S., Izaguirre, J. A., Swat, M., Glazier, J. A., Merks, R. M. H., Glimm, T., Hentschel, H. G. E., and Newman, S. A. (2007). From genes to organisms via the cell: a problem solving environment for multicellular development. Computing in Science & Engineering 9, 50-60. (PDF)

Christley, S., Zhu, X., Newman, S. A., and Alber, M. S. (2007). Multiscale agent-based simulation for chondrogenic pattern formation in vitro. Cybernetics and Systems 38, 707 - 727. (PDF)

Alber, M., Chen, N., Lushnikov, P. M., and Newman, S. A. (2007). Continuous macroscopic limit of a discrete stochastic model for interaction of living cells. Phys Rev Lett 99, 168102. (PDF)

Zhu, J., Zhang, Y.-T., Newman, S., and Alber, M. (2008). Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology. J. Scientif. Comput.40, 391-418 (PDF).

Newman, S. A. (2009). E. E. Just's "independent irritability" revisited: the activated egg as excitable soft matter. Mol Reprod Dev. 76, 966-74. (PDF)

Newman, S. A., Forgacs, G. (2009) Biological development and evolution, complexity and self-organization in. Encyclopedia of Complexity and Systems Science, pp. 524-548. (link)